Canonical reduction of stabilizers for Artin stacks with good moduli spaces
نویسندگان
چکیده
We present a complete generalization of Kirwan’s partial desingularization theorem on quotients smooth varieties. Precisely, we prove that if X is an irreducible Artin stack with stable good moduli space X→πX, then there canonical sequence birational morphisms stacks Xn→Xn−1→⋯→X0=X the following properties: (1) maximum dimension stabilizer point Xk+1 strictly smaller than Xk and final Xn has constant dimension; (2) Xk+1→Xk induce projective spaces Xk+1→Xk. If in addition smooth, each intermediate gerbe over tame stack. In this case algebraic quotient singularities X. When our result can be combined D. Bergh’s recent destackification for to obtain full
منابع مشابه
Good Moduli Spaces for Artin Stacks
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
متن کاملCanonical Artin Stacks over Log Smooth Schemes
We develop a theory of toric Artin stacks extending the theories of toric Deligne-Mumford stacks developed by Borisov-Chen-Smith, Fantechi-Mann-Nironi, and Iwanari. We also generalize the Chevalley-Shephard-Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding X is canonically the good moduli space (in the...
متن کاملFormal GAGA for good moduli spaces
We prove formal GAGA for good moduli space morphisms under an assumption of “enough vector bundles” (which holds for instance for quotient stacks). This supports the philosophy that though they are non-separated, good moduli space morphisms largely behave like proper morphisms.
متن کاملCycle groups for Artin stacks
We construct an algebraic homology functor for Artin stacks of finite type over a field, and we develop intersection-theoretic properties. DOI: 10.1007/s002220050351 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: http://doi.org/10.5167/uzh-22143 Accepted Version Originally published at: Kresch, A (1999). Cycle groups for Artin stacks. Inventiones Mathematicae, ...
متن کاملSheaves on Artin Stacks
We develop a theory of quasi–coherent and constructible sheaves on algebraic stacks correcting a mistake in the recent book of Laumon and Moret-Bailly. We study basic cohomological properties of such sheaves, and prove stack–theoretic versions of Grothendieck’s Fundamental Theorem for proper morphisms, Grothendieck’s Existence Theorem, Zariski’s Connectedness Theorem, as well as finiteness Theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2021
ISSN: ['1547-7398', '0012-7094']
DOI: https://doi.org/10.1215/00127094-2020-0050